Why 3D Modeling is Important for Product Design Firms

Today, design engineers can use 3D printing to quickly fabricate early-stage “look and feel” prototypes before leveraging rapid injection molding to create later-stage prototypes using final production materials (ideal for regulatory and market testing). These capabilities can unlock a new level of value from prototypes, and in many cases dramatically accelerate the product development process. But physical prototypes are only one important resource for product development teams to consider.

What is 3D modelling

A technique used in computer graphics for producing a 3D digital representation of any object or a surface. An artist uses special software to manipulate points in virtual space to form a mesh known as the collection of vertices that form an object , and these objects can be generated automatically or created manually by deforming the mesh or manipulating the vertices

These 3D models includes a variety of mediums including video games , movies , architecture , illustration , engineering and commercial advertising , which this process of 3D modelling we a able to produce a digital object that is fully capable of animation , making it essential process for character animation and special effect.

Features Of 3d Modelling

If prototypes help bridge the gap between product ideation and physical production, digital product renders extend this bridge to business development scenarios where physical prototypes are not:

  • Cost effective. For example, bringing an early-stage product concept demonstration to a trade show might be important for exploratory business development discussions. But the cost of fabricating a physical prototype may not make sense for a product in these earliest stages of market research.
  • Physically convenient. For large, heavy, or fragile products, bringing a prototype to a trade show or sales discussion may be unnecessarily costly and burdensome (if not outright impossible). Scaled down physical models are one possibility, but renders offer an even faster and more cost-effective alternative.
  • Sufficiently agile. If a business development professional gets an urgent request to engage in a detailed exploratory discussion halfway across the globe, physical models simply may not be fast enough. Digital renders can be generated quickly, readily customized to specific clients or opportunities, and instantly sent anywhere in the world.
  • Sustainable. By using 3D modeling to review multiple design possibilities, companies can achieve the sustainability requirements for their products. The number of physical prototypes can be reduced, greatly reducing material waste.

3D Modeling In Product Development

High-quality 3D renders are also valuable for the product development process itself. When moving from an initial list of proposed features to ideation for actual design concepts, 3D models are the best way to start conceptualizing the physical forms the product can take. In the early stages of exploring and refining multiple design concepts, 3D renders are often the perfect tool—they can be generated quickly, modified almost instantaneously, and readily shared between business units, distributed teams, and external vendors.

Even with our ability to bring unprecedently flexible physical prototyping technologies to the table, the generation of 3D digital models remains instrumental to virtually every product development process we support. For a look at some of our renders in the context of an actual product development process

3D Modeling Important for Product Manufacturing Companies

Unless you have been hiding under a rock these past several years, you have probably heard the terms “3D modeling” and “3D rendering” thrown around In short, it reduces project times and costs. This gives manufacturers more room to experiment with designs. Companies that fail to utilize 3D modeling technology quickly fall behind the competition.

Over the years, consumers have grown more tech-savvy. As a result, they have become more demanding and selective in their product choices. Even the smallest mistake or confusion can turn off a potential customer and send them running to your competitors. That’s why manufacturing companies are starting to utilize 3D modeling to showcase their products.

If you still aren’t convinced that 3D modeling can transform your business’s sales and marketing, read on for all the ways that 3D modeling has impacted companies

3D Rendering

3D rendering is the process of turning information from a 3D model into a 2D image. 3D rendering can be used to create a variety of images, from the intentionally non-realistic  to what’s called photorealistic. The latter look so much like images captured by a traditional camera that most consumers can’t tell the difference between a 3D rendering and a “real” photo

Whether you’re watching animated cartoons, flipping through a magazine, viewing billboards on your morning commute, or scrolling through social media on your phone, you’re likely to come across images created by the process known as 3D rendering. In fact, 3D rendered images have become an important form of visual content for marketers, advertisers, content producers, and others

The 3D rendering process is complex. In the early days, that meant that it was only accessible to large organizations with deep pockets and lots of resources. Think: big-budget film studios that used 3D animation to produce blockbuster movies with a variety of impressive visual effects like CGI. The software and tools required to carry out the 3D rendering process have improved and become more widely available. Now, organizations of nearly any size can create 3D rendered images without blowing their whole marketing budget.

Conclusion

You can even use 3D Modeling in various marketing mediums. There are companies with a virtual library of 3D models that they can use in the future. If any changes are made to the design, posters, brochures, and other media can also be edited easily.

In terms of collaboration, scrupulous details can make it simpler to convey all the specifics of a particular design. With 3D models, teams can inject more details so everyone stays on the same page.

Monarch innovation is a leading design and engineering company in India with very dedicated minds and design solutions. If you are looking for 3D modelling services then contact us here.

7 Types of Architectural Plans for Your Next Design

7 Types of Architectural Plans for Your Next Design

Architecture is the process of designing new buildings or structures for construction. There are several unique jobs in the architecture field, many of which involve drafting new designs by drawing. Because architects can design almost any kind of structure, there are many different types of architectural drawings that they can use, and if you’re considering this career, it’s important to understand them. In this article, we define what an architectural drawing is and explore a list of seven types of drawings that architects can use in their work.

Types of architectural drawings

Floor plan

Floor Plan

A floor plan is a detailed illustration of the layout of a room. When designing a building with multiple rooms or floors, architects can create floor plans for each room to organize the appearance and logistics of the structure once it’s built, such as the placement of doors and windows. To create effective floor plans, architects can use their knowledge of dimensions and instalments to understand how much space is in a room, the shape of a room and more.

Site plan

Site Plan

A site plan is a drawing that shows an overview of a construction site where a new building or structure is being built. Site plans typically include illustrations of the new building as well as any construction projects that might accompany it, such as creating a parking lot or outdoor seating area. Architects can consider details like how large a building might be, whether there are roads or pavement nearby and whether any other projects might be necessary.

Cross section

Cross Section

A cross section is a drawing of a building that provides a view of how tall a building is and what rooms it has inside of it. To picture what a cross section looks like, it can be helpful to imagine an illustration of a building that has been completely constructed and then cut in half vertically, keeping its shape but revealing the inside.

Landscape

Landscape

Landscapes can be especially helpful in residential or commercial construction projects because they show what aspects of the area might make it ideal for a home or business, such as heavy foot traffic, spaces for recreation and accessible roads. A landscape drawing can also display the aesthetic elements of a building’s exterior, like paint colors or light fixtures, which can help clients visualize the new building before its built.

Elevation

Elevation

Elevations can indicate the exact height of a building to determine the size of certain fixtures, like doorways and windows, in order to ensure they can be used and have an attractive appearance. For example, if an architect decides not to use an elevation and estimates the size of the windows, they might be too large or too small for the space.

As built

as built

An as-built drawing is an illustration that compares the current appearance or state of a new building to its original plans or blueprints. This type of drawing can be very helpful during projects where unforeseen circumstances arise that require an architect to adjust their plans. It can show how to achieve the desired results in the current structure by working from the original design.

Excavation

Excavation

An excavation drawing shows the dimensions of a building’s foundation. This can help to determine how deep construction teams need to dig into the ground and how long and wide their foundation needs to be. Excavation drawings can also include details about the excavation process, such as what materials need to be removed and what excavation methods a team might use.

Architectural Remodeling

Remodeling architecture and design includes projects that transform, maintain, restore and/or preserve elements of existing constructions. here, architects and designers give new life to historic buildings, forgotten properties and other outdated spaces.

Architectural remodeling is the process of changing the functionality and the design of an area. it may involve tearing out a wall to expand a bathroom and reconfiguring a kitchen layout so the cabinets, fridge, sink, and range are in different locations.

Interior Designer

An interior designer, to put it simply, is someone who designs the interiors of people’s homes. But the job isn’t done yet. The best interior designing colleges in Mumbai does not simply create something very artistic to be done with a house; instead, he or she strikes the right balance between functionality and aesthetics for their clients. They consider all of the furnishings that must be present in the home, as well as how to best arrange them in an empty flat to create a lively and appealing environment.

Interior design must make the most of whatever space he or she is given, taking into account factors such as how much natural light and fresh air enters the room, what arrangement will provide the most comfort for the customer, and what will be the most attractive to the customer’s taste.

Architectural expert

architects as experts who orchestrate and take the lead in reconciling all the goals for a building or other structure. Architects do this by providing solutions through the use of:

  • artistic imagination and creative vision to design spaces where their ideas and techniques-represented through form, light, textures, materials, and colours-combine to fulfill our aesthetic, spiritual, and cultural needs;
  • practical and technical knowledge to create spaces that are safe, efficient, sustainable, and meet economic needs; and
  • interpersonal skills, psychological understanding and ethical practice to craft spaces that fulfill the complex, and sometimes conflicting, needs of clients, users, and the community.

Conclusion

Though our guide to different plans is not fully comprehensive, you should now have a solid idea of what plans you need for your next architectural design project. Monarch innovation is a leading design engineering company in India with very dedicated minds and design solutions. If you are looking for 3D modelling services, product design then contact us here.

Advantages of Using Rapid Prototyping Services for Your Business

Rapid prototyping is the fast fabrication of physical part, model or assembly using 3D computer aided design (CAD), the creation of the part is usually done by using additive manufacturing or more commonly known as 3D printing

Where the design closely matches the proposed finished product, it is said to be high fidelity prototype as opposed to low fidelity prototype, where there is a marked difference between the prototype and the final product. It can be used at any stage of product development cycle for any components or sub- components, which can be repeated numerous times during the product design process

Benefits of rapid prototyping

Prototyping is an essential element of the design and engineering process. Traditionally, though, it has created challenges as design teams strive to create makeshift models that provide a valid basis for a particular concept. This has, in the past, required nearly the same processes, costs, tooling and setup as the final product, making prototypes a prohibitive venture for many businesses. Rapid prototyping, in contrast, offers many advantages and applications that set it apart from traditional prototyping.

  • Communicate design decisions better. In comparison to a static specification, a prototype is much easier to understand. It’s also much easier to get feedback on design decisions if everyone can see how things might work with their own eyes. This is the best way to ensure everyone shares a common understanding of how the upcoming product should look and behave.
  • Save time by writing less documentation. Developers can use prototypes to understand how things work. Even when engineering need documentation for specific user flows or interactions, designers will need to write much less description text for a prototype than for a set of wireframes.
  • Allows for experimentation. Rapid prototyping helps teams experiment with multiple approaches and ideas. It facilitates discussion through visuals — presenting information in a visual format is the fastest way to get them to engage with that information. This leads to better, faster design.

3D Printing

3D printing uses computer-aided design (CAD) to create three-dimensional objects through a layering method. Sometimes referred to as additive manufacturing, 3D printing involves layering materials, like plastics, composites or bio-materials to create objects that range in shape, size, rigidity and Color

3D printing uses

  • Rapid prototyping and rapid manufacturing

3D printing provides companies with a low-risk, low-cost and fast method of producing prototypes that allow them to test a new product’s efficiency and ramp up development without the need for expensive models or proprietary tools.

Taken a step further, companies across many industries will also utilize 3D printing for rapid manufacturing, allowing them to save costs when producing small batches or short runs of custom manufacturing.

  • Functional parts

3D printing has gotten more functional and precise over time, making it possible for proprietary or inaccessible parts to be created and acquired so a product can be produced on schedule. Additionally, machines and devices wear down over time and may be in need of swift repair, which 3D printing produces an easily accessible solution to.

  • Tools

Like functional parts, tools also wear down over time and may become inaccessible, obsolete or expensive to replace. 3D printing allows tools to be easily produced and replaced for multiple applications with high durability and reusability.

  • Models

While 3D printing may not be able to replace all forms of manufacturing, it does present an inexpensive solution to producing models for visualizing concepts in 3D. From consumer product visualizations to architectural models, medical models and educational tools. As 3D printing costs fall and continue to become more accessible, 3D printing is opening new doors for modelling applications.

Product design services

Product design means a lot more than what the name implies. Designing a new idea or invention is not merely about its physical form; it involves problem solving to improve the quality of a new or existing product and enhance the end user experience.

Some Product Design Services

  • Ergonomics: During this process, we study how the intended users interact with your design to ensure the product works the way it meant to.  The user should not have to adjust to the product, the design must be effortless to use, often improving safety, efficiency, and comfort along the way.
  • Aesthetics and Styling: The aesthetics are all about the way your design looks and are largely responsible for how a new product design captures the market. During this stage of product design, we optimize a product’s appearance through sketching, 3D Modeling, prototyping, and computer surface modelling continually refining the product’s aesthetics to appeal to the target market without sacrificing its functionality.
  • Computer-Aided Design and Mechanical Design: The product design team is involved throughout the entire process to ensure your concepts are possible in both their function and manufacturability. We use sophisticated software to create highly accurate models and assembly parts that can be used for testing the integrity of the product.

Conclusion

Deciding on whether to rapid prototyping services in your manufacturing process depends on your business needs. It all depends on what kind of prototyping you need. Simple projects it can do well, but for more complex and larger projects, you can try other options. Monarch innovation is a leading design and engineering company in India with very dedicated minds and design solutions. If you are looking for 3D modelling services, product design then contacts us here.

How Industrial Designers and Engineering Services Have Influenced the Product Design World

How Industrial Designers and Engineering Services Have Influenced the Product Design World

Both industrial designers and industrial engineers work or are involved in product manufacturing, and often with the same objective of creating a product that functions well while at the same time minimizing production cost. They are also often part of the same team, assembled to bring product ideas to reality.

Professionals of this field focus mainly on the aesthetic, usability, and manufacturability of a product throughout an entire product development cycle which includes ideation, research, prototyping, testing, analysis, validation, commercialization, and maintenance. All those processes running in a continuous cycle are expected to eventually lead the designers to an endless product improvement that answers the ever-changing buyers’ preferences and market demand.

Industrial Designer

Industrial designers develop the concepts for manufactured products, such as cars, home appliances, and toys. They combine art, business, and engineering to make products that people use every day. Industrial designers consider the function, aesthetics, production costs, and usability of products when developing new product concepts.

Some industrial designers focus on a particular product category. For example, they may design medical equipment or work on consumer electronics products, such as computers and smart phones. Other designers develop ideas for products such as new bicycles, furniture, housewares, and snowboards.

Other designers, sometimes called user interface designers or interaction designers, focus on the usability of a product, such as an electronic device, and ensure that the product is both simple and enjoyable to use.

Engineering Services

Engineering services” means any service or creative work, the adequate performance of which requires engineering education, training and experience in the application of special knowledge of the mathematical, physical and engineering sciences to such services or creative work as consultation, investigation, evaluation, planning and design of engineering works and systems, engineering studies and the review of construction for the purpose of assuring substantial compliance with drawings and specifications. Such practice includes the performance of architectural work incidental to the practice of engineering.

Product Design

Product design is the process designers use to blend user needs with business goals to help brands make consistently successful products. Product designers work to optimize the user experience in the solutions they make for their users—and help their brands by making products sustainable for longer-term business needs. The role of the industrial designer in the product development process is to establish the product design language, as well as to mark companies and ownership. They are the most important part of the process because they have an understanding of what is happening in the market and the preferences of consumers.

Industrial Design Services

Industrial design is the integral aspect of the product design process where we help ensure the product design looks, feels, and weighs precisely the way you envisioned. It’s one of two important elements of the product design process. Industrial design focuses on aesthetics – how beautiful and eye-catching the product is. The second part of the product design process is engineering. Mechanical engineering services and electrical engineering services are especially important for more complex products when it comes to manufacturability. Because a well-designed and engineered product helps ensure that every unit off the production line is impeccable, free of defects, and most importantly, provides an intuitive, compelling, and easy-to-use end-user experience.

Product Development Cycle

1- Develop the idea

This is the brainstorming stage. The product team looks for ways to solve problems for their user personas. During this phase, the team will generate several product ideas.

2- Validate the idea

The goal now is to narrow the list to one product or feature worth pursuing. There are several ways of screening ideas to learn which are the most viable.

3- Build a prototype

For a company that develops software, the engineering team can create a very simple mockup of the application. They could even develop only a wireframe.

4- Create the messaging

the product team will be working with the marketing department to create the product’s market strategy , like developing product’s value proposition, creating tools and materials for sales department etc.

5- Build the Product

The goal now is to ship an MVP as quickly as possible. The sooner the company puts a working version of its product into users’ hands, the sooner it can receive useful feedback to improve the product.

6- Release the product

After developing and testing its MVP, the company is now ready to launch it to the public. The MVP will help the company gain several important insights at once, like level of market interest , types of buyers and users and how real users react to the product.

7- Improve the product

The product team will take real-world feedback from its early users to improve the product

Mechanical Engineering Services

Mechanical engineers design power-producing machines, such as electric generators, internal combustion engines, and steam and gas turbines, as well as power-using machines, such as refrigeration and air-conditioning systems. Mechanical engineers design other machines inside buildings, such as:

  • Calculating the space available in a plant and the longevity of parts and equipment, as well as labor costs, to provide sound and reliable cost estimates.
  • Ensuring that test specifications fall in accordance with any project blueprints.
  • Testing the individual parts and tools to make sure that they are truly up to the job.
  • Drafting blueprints that will provide guidance from the beginning to completion of projects.
  • Recommending updates based on the results of any testing.
  • Evaluating any sketches and designs that have already been drafted, and making suggestions for improvements.

Industrial Engineering Services

Industrial engineers work to reduce any waste of time, money, materials, energy or other commodities by streamlining procedures and processes. This is achieved through the application of specialist knowledge and skills to specify, predict and evaluate results from processes and systems. The results of this allow for new processes and systems to be produced, with business administration activities overlapping with areas such as production and manufacturing engineering, operations research, systems and supply chain engineering, management science and engineering, safety engineering, ergonomic and logistics engineering and more depending on the needs of the user.

Conclusion

Despite the similarity in name, industrial design and industrial engineering are two completely different professions. In some cases, they can be part of the same team, but each has different sets of responsibilities. Industrial designers are concerned with how a product looks and functions, while industrial designers figure out how to build or mass-produce the product in cost-efficient way without undermining quality. . Monarch innovation is a leading design and engineering company in India with very dedicated minds and design solutions. If you are looking for 3D modelling services, product design then contact us here – https://www.monarch-innovation.com/contact-us/.

What Is Iterative Design and How Does It Work?

What Is Iterative Design and How Does It Work?

Iterative design is a design methodology based on a cyclic process of prototyping, testing, analysing, and refining a product or process. Based on the results of testing the most recent iteration of a design, changes and refinements are made. This process is intended to ultimately improve the quality and functionality of a design. In iterative design, interaction with the designed system is used as a form of research for informing and evolving a project, as successive versions, or iterations of a design are implemented.

Iterative design can be used at any phase of the design process, including when the product has already been launched in the market and you are looking to create improvements in that product. However, it’s worth noting that the earlier in a product’s lifecycle that you implement iterative design, the more cost-effective the approach will be.

Iterative design process

The goal of iteration is to get closer to the answer, solution, or discovery with each repetition. The concept and the solution eventually converge, such as in a math function or a scientific discovery, because you progress toward your desired result each time you iterate or tweak the product.

The iterative process is widespread across many industries. Most Agile projects use an iterative approach, incrementally improving the product with each cycle or sprint. The end of one iteration becomes the starting point for the next round.

For example, think of Microsoft or Apple products. Using an iterative approach, these products are regularly updated with new features or benefits, minus some of the problems of previous editions. Even writers, musicians, and cooks use the iterative process to refine their creative work.

You can also use the iterative process when the final output or decision cannot be easily revoked (such as a jury verdict when many votes have to be taken to reach agreement) or if the consequences of revoking the outcome could be emotionally and financially costly (such as a marriage) or have long-term implications (such as war).

Several instances of iterative design are as follows:

  • Wiki: A wiki is a natural repository for iterative design. The ‘Page History’ facility allows tracking back to prior versions. Modifications are mostly incremental, and leave substantial parts of the text unchanged.
  • Common law: The principle of legal precedent builds on past experience. This makes law a form of iterative design where there should be a clear audit trail of the development of legal thought.
  • Evolution: There is a parallel between iterative and the theory of natural Selection. Both involve a trial and error process in which the most suitable design advances to the next generation, while less suitable designs perish by the wayside. Subsequent versions of a product should also get progressively better as its producers learn what works and what doesn’t in a process of refinement and continual improvement.

Iterative Design Pattern

This is the initial concept. An idea has led to a design for a new product. The quality of this first design is not critically important because of the other steps in the process. It merely serves as a starting point regardless of how similar or different it is to the eventual result.

Prototype

There are only so many aspects of a product that can be observed accurately without a physical model. This is where prototyping comes in. Preferences tend to vary when it comes to prototyping. Rapid prototyping offers plenty of advantages, but other methods have unique benefits as well.

Evaluation

Assuming that the concept has already been proven, everything else about the prototype is dissected. What could be different? What could be better? Does something need to be added or removed? Is it free of hazards that could harm the end-user? All of these questions and more are useful at this stage.

Repeat

After an initial cycle of CAD design, prototyping, and evaluating, it’s time to take the observations from the evaluation stage and return to the design stage. Changes are made to the design, which leads to new prototypes, and these new prototypes need their evaluations.

Rapid prototyping

It is a analogy for proof of concept , the process of quickly creating the future state of a product , be it a website or an app , validating it with a group of users , stakeholders , developers and other designers.

The ‘rapid ’ part of the prototyping implies that , this type of prototyping is quicker and cheaper than creating a full blown version of your idea in code , the whole concept is based on setting an idea for the design team and iterating rapidly , that will provide the people a product which can be utilized to its maximum limit.

The process of rapid prototyping can be present in three stage :

  • Prototyping

Creating a solution which can be reviewed or tested

  • Reviewing

Giving prototype to users or stakeholders and gather their feedback , which helps you understand it better

  • Refining

Based on the feedback that is received , identify the area which need to be refined or clarified

Product Design Service

Product design services providers allow businesses to outsource product development to an external team of experienced designers and engineers. Companies that offer product design services are capable of handling the entire product lifecycle, from ideation to manufacture. Product design companies employ industrial designers, user experience professionals, and engineers to cover every step of the product design process.

Conclusion

Deciding on whether to rapid prototyping services in your manufacturing process depends on your business needs. It all depends on what kind of prototyping you need. Simple projects it can do well, but for more complex and larger projects. Monarch innovation is a leading design and engineering company in India with very dedicated minds and design solutions. If you are looking for 3D modelling services, product design then contact us here.

An OEM’s Guide to Product Design and Manufacturing Prototypes

An OEM’s Guide to Product Design and Manufacturing Prototypes

Introduction

Too often a product launch doesn’t get the commitment or focus it needs , it always starts with good intentions and realistic expectations but at some point the process falls apart , every product development project starts with identifying your market and defining your product capabilities and it ends with product sales and distribution , in between the idea of initial concept and design to prototype and manufacturing , the process often combines specialized engineering skills and advanced manufacturing technology and capabilities.

The OEM guide will help you from the design to the end product and cover some of the common issues that you might face in each stage of product development.

What does OEM guide help you with

OEM guide helps and provide a better communication of product design and getting everything ready for the action in the best possible way

Some steps that are followed in product design are –

  • Identification and development of design discipline scope of works.
  • Management of design contractors and their process control.
  • Provision of design disciplines including control & instrumentation, electrical, civil, and mechanical processes.
  • Management of design interface between designers and 3rd parties.
  • Management of design strategies & ideologies. .

Benefits include:

  • Gaps in resources eradicated.
  • Contractor retains ownership over design and construction processes.
  • Contractor / designer retains reputation for providing “complete” design.
  • Allows client to manage the sections / disciplines they know and we do the rest.

OEM’s guide to product design

Step1- Product Concept

You start with an idea Ideas come and go. The better ideas stick around awhile. The very best reach this stage in the process. When you have an idea for a new product, you need to share it.

basic questions to be asked :

  • What will this product do?
  • Will it be a new product or an improvement of an existing product?
  • Who will use it?
  • What market will it serve and what market requirements will you face?
  • What will it replace?
  • How will they use it?
  • What will they be willing to pay for it?
  • What will it cost you to produce? These questions will help you define the “form, fit and function” of your new product – and its overall viability as a profit-making product.

Step 2- Product Specifications

You know what you want to build. You’ve shared it with others, you have a consensus and you have a rendering.

  • What are the functional specifications of this product? Beyond the primary function, what else will it do? What additional features should the product have?
  • What are the design specifications? Will this be a hand-held tool, a desktop product or a standalone? What size and weight factors need to be considered? How will it be stored?
  • What are the regulatory requirements? Have you considered the different safety, quality and package design requirements for different countries?
  • What environmental factors should you consider? Will the product be used around water or in hot or cold temperatures? What about explosive environments? Will power limitations be a concern?

Step 3- Proof of Concept

With your rendering and user specifications in place, it’s time to prove your concept – to demonstrate that your product will actually work as intended.

This prototype is not a finished design. It’s often a group of off-the-shelf components integrated to perform the basic function of the product. It is created to check whether the product that has been described, will this be the outcome if it, and if not, the process is done from the starting.

Step -4 Product Design

Product Design takes your initial prototype to the next level with a more finished and more functional version of your product. The prototype takes into account the more complete user experience – and will bear a closer resemblance to the end product. It will not be an exact replica, however. In this phase, the prototype should reflect what was outlined in Product Requirements it will help you assess individual components of the product – for their performance, manufacturing suitability and costs. Depending on the type of product being developed.

Step 5- Verification and Validation

Design Verification The design verification is one of the most significant quality steps in the product development process. Your product design will be examined to show that the new product, as designed, will meet the product specifications, performance expectations and all applicable regulatory requirements. This verification activity includes design reviews, testing, and regulatory approval.

Product Validation At the same time, the product needs to be validated against the marketing expectations. It is important to test the product to be sure that it performs its intended function as originally described by marketing.

Step 6 – Manufacturing Process Design

If you consider the manufacturing facility to be the machine that produces your product, it stands to reason that you want this machine to be properly designed, easily maintained, and flexible,  it must meet the highest quality standards

The key questions to ask :

  • Is the manufacturer well suit for the type of products you need produced?
  • Does it have the in-house capability to meet all your needs?
  • Will your production volume be the right fit for the manufacturer?
  • What systems will be in place to ensure consistent quality?
  • What testing and calibration will take place before product is complete?
  • Will the manufacturer handle inventory?
  • What is the packaging and shipping process?
  • Will the manufacturer be expected to handle accessories, spare parts and repair.

Step -7 Manufacturing

This transition needs to be seamless and completely free of the types of problems you might expect when a product is designed by one organization and manufactured by another.

Depending on your project, you will also want to pay close attention to your designated facility section. The manufacturer will set aside some work stations or selected machinery for your project.

Step -8 Sustaining Services

You will need to have a fully equipped and staffed service and repair division, which is available to perform both in-warranty and out-of-warranty service, repair, and calibration. Technicians will need to be fully trained to perform fast, reliable repair and recalibration of your product. You will also need to set up and maintain an inventory of spare parts and consumable replacement components.

Prototype Design

Prototypes have been made, tested, checked, remade, repurposed, and you’ve produced something that works how you wanted it to. After all of the testing and creating, a factory was chosen out of the hundreds of options available. Working with them, a production process has been created and finally, in your hands is the thing you wanted to make.

It’s not over at this juncture; far from it. If you want your product to be a continuing success there are still things you need to look after.

Conclusion

All in all an OEM guide to product design and manufacturing helps you many ways to get a well-designed and detailed process that creates specifications is going to go a long way in making your journey easier. That’s shouldn’t be the end of your involvement in the process, even if your manufacturer agrees to take on all of the post-shipping aftercare. Monarch innovation is a leading design and engineering company in India with very dedicated minds and design solutions. If you are looking for 3D modelling services, product design then contact us here.

How do accurate 3D CAD drawings improve product development

How do accurate 3D CAD drawings improve product development?

Product development is a crucial stage in any business. To develop any product, first, we need to make the blueprint of the design. Nowadays, designers are using certain software instead of drawing it manually. One of the famous design software is CAD. CAD helps to develop the product’s prototype. Initially, designers used 2D CAD but now 3D CAD Drawings are famous among designers. Let us tell you why people shift towards 3D CAD Drawings.

Introduction-

The act of making and altering technical drawings, as well as annotating designs, is known as 2D drafting and drawing. Previously, people relied on 2D drawings to develop their products’ designs. However, this program is outdated and sluggish. The real blueprint of the imagined product design is 2D CAD drawings.

However, due to certain constraints, individuals are increasingly turning to 3D CAD Drawings. 3D CAD has a lot of advantages when it comes to generating product designs. Let’s start with why 2D CAD drawings are obsolete, and then go on to the advantages of 3D CAD drawings.

Limitations of 2D CAD Drawings-

Every type of tech has its own set of constraints. The sensible thing to do is to figure out how to conquer it or find answers to it. With the rise in popularity of 3D CAD drawing and printing, 2D CAD drawing has fallen behind. That is why many people prefer 3D CAD designs. Let us tell you what those limitations compelled designers are to switch to 3D CAD-

  • Changes in design are difficult-

Making modifications to designs takes time, and it’s significantly more time-consuming for 2D designs. To capture all of the features of a single part, designs may need to be rebuilt several times at different angles.

  • Checking Processes is Complicated-

The complexity of product design is impossible to portray using 2D drawings. They do not account for assembly and fit. Products made from a 2D drawing need a lot of effort because there are going to be more mistakes.

  • Error-prone-

When several stakeholders interact, 2D designs are prone to interpretation mistakes. It’s a difficult undertaking in and of itself to keep track of all the design modifications and variations of these designs.

  • Time-consuming process-

It takes a long time to make modifications to the design. Because 2D drawing needs more effort, it is significantly more thorough. In 2D CAD, you may occasionally be required to construct a physical prototype. It is a challenging and time-consuming operation in and of itself.

What are 3D CAD Drawings?

3D CAD is a design and technical documentation technology. It uses an automated technique to replace hand drawing. 3D CAD software is used by architects, engineers, and other professionals to precisely model and display things on a computer. 3D CAD Drawings allow designers to develop the prototype of the product.

Benefits of 3D CAD Drawing for product development-

3D drawings provide easy-to-understand design information that any stakeholder can understand and provide input. Through speedier product development, higher quality goods, minimizing excessive expenditures, and enabling 3D designers to innovate, 3D CAD immediately translates into improved income. Your CAD design service can no longer afford to use 2D in this competitive worldwide market. The following are the benefits of 3D CAD Drawing for product development-

  • Accuracy and Error Reduction-

A dynamic engineering model is the foundation of AutoCAD’s operation. This paradigm combines design and production drafting, allowing for revisions to any aspect of the design at any point throughout the project’s lifecycle. As a result, errors are reduced, and mistakes are less likely to occur. They’ll also save your employees time from having to rewrite design drawings.

  • Save both time and money-

3D CAD works quickly and saves time because of its specialized and user-friendly interface and workflow. AutoCAD has documentation tools that aid designers and enhance productivity. The designs and documentation operations are streamlined by the architects. It also offers options for making changes to projects faster.

  • Improve the efficiency of your designs-

You may perform tests on your 3D models to understand how a design might operate if specific factors were changed. You may improve the performance of your design in this way. 2D drawings cannot achieve this and must first be converted into a 3D CAD model.

  • Accelerate the approval process-

Non-professionals may struggle to grasp a 2D drawing. It can cause severe delays in the approval process. The approval procedure is swift with 3D models. This allows the team to review the product quickly. A 3D accurate model may convey a lot of information—enough for a novice to fully comprehend the design.

  • Inter-team communication has improved-

When designs are simple to grasp, it is also easier to include end users in the design process and collect their comments. Everyone participating in the product development process has a clear understanding of their roles in bringing the concept to life.

  • Visualization-

2D graphics don’t give you a full picture of a product. You can’t see how the design changes in real-time. A 3D CAD sketch allows you to see a design from every angle and see how it would operate in real life.

  • Cost-cutting-

Many common design components are included in 3D CAD, saving designers the time and effort of developing from scratch. This helps you save time and money while creating a design. You may even outsource 3D CAD design to save even more money.

Conclusion-

3D CAD drawings created using 3D design processes provide an objective perspective of the imagined product. It makes production more efficient and easier. 3D CAD has been effectively used by many manufacturers. It enables them to innovate, optimize workflows, and become more efficient. 3D CAD models are easier to work with, speed up the creation of new products, and help your business prosper. Product design businesses can use 3D CAD drawings to get beyond the limitations of 2D CAD drawings.

If you have 2D and 3D drawing requirements for your products, then feel free contact Monarch Innovation Private Limited. We are Engineering design services provider in worldwide.

Cad Drafter and Cad Designer

Difference Between CAD Drafter vs CAD Designer

CAD is computer-aided design software that converts the created design by the engineers into technical drawings. These technical drawings are useful for building drawings as well as manufacturing products. Detailed information such as materials, codes, specified dimensions as well as production methods.  They have the details about the codes, production method, and precise details. They will be allowed expertise in all the possible designs due to the drafters.

CAD Designer

CAD Designer generates essential technical drawings which will aid the buildings as well as manufacturing things. They are more skilled than drafters. They gain extensive knowledge such as circuit layout, mechanical systems, architecture, and electrical lighting. CAD Designer generally has knowledge regarding the codes and regulations which must be complied with by the designers. The coordinate sets of designs are given all the correct information by the CAD Designer.  They offer a wide range of skills to their field and their work includes creativity and implying technical knowledge.

The CAD Designer can generate technical drawings which will help aid manufacturing and building as well as manufacturing bridges. They leap from drawing to making more money than CAD as they have a brief understanding of the industry they work in and the reason for striving. A career in CAD design does not require a four-year degree, learning great moves and presence of mind is enough. Now the students can earn good salary jobs quickly. They have the responsibilities and require the least supervision while finding codes and family regulations.

A CAD engineer is highly professional, and they are entitled to computer-aided software. They must have deep had a deep understanding of physics, science, materials, and mathematics.

  1. Designing the framework for the project.
  2. Collaboration with packaging and industrial engineer for the development and manufacturing of market products.
  3. The time and expense so that estimation for development.
  4. They can produce three-dimensional technical drawings.
  5. Designing the renderings, elevation, and floor plane using computer software.

CAD Drafter 

The drafters are given initial beginning work which must be done under supervision. They need guidance as in the beginning, they do not have the required knowledge and experience. They are provided with the training to carry out the improvements and creative modifications for the ongoing projects.

CAD drafters consist of many specialties such as

  • Civil drafters can create topographical maps for the project infrastructure such as fastening methods, flood-control projects, highways, and piping systems.
  • Architectural drafters are structural-based designs made for new buildings, materials used, structural features, and specifying building type.
  • The electrical drafter is wiring diagrams made especially for the construction workers. They will use these designs to install as well as repair the electronic devices.
  • Mechanical drafters are dimensions that indicate the fastening method and various other requirements for mechanical and machinery device assembly.
  • Careers in CAD as drafter require full-time dedication while working in an office. While at the same time they will be required to visit onsite jobs while spending most of the time working

CAD drafters’ can convert the designs created by them into professional technical drawings. They have the details about the codes, production method and precise details. They will be allowed expertise in all the possible designs due to the drafters.

  1. Keep marking analysis to keep the resistance and to offer solutions in engineering class.
  2. The designs are be created using software
  3. The timeline budget as well as changed through them to solve problems.
  4. Revers all the course.

Are you looking for CAD Drafter and Designing services? We, at Monarch Innovation, Outsourcing engineering services and are well known of our design thinking and effective approaches. Click here to learn more about it and contact us to avail of the service.

Frequently asked questions –

Q. What does a CAD designer do?
A. They are the technology that was expected to conflict. Apart from being comfortable, knowledge. The communication kye which will be essential ho will create 2 D which is also known as model images. They will help others by assisting and extensive ideas or social extensive knowledge and computer skills. CAD designers must have the capability to work with other team members of various departments to fix the budgets, assist decisions regarding the resources, and finish the project with all the materials they have.

Q. What types of fields do CAD drafters work in?
A. The CAD drafters can be a part of different fields such as architectural drafters, electrical drafters, and civil drafters. You can find quite a difference in the drafters of various fields. For example, civil drafters have the skills to design maps geographical whereas, whereas the architectural drafters considered the structural features of the designs of the building and create drawings. The electrical drafters practically layout all the wiring diagrams of the buildings by creating layout drawings. Various other drafting field includes the electronic wiring layouts and design drawings of the manufacturers.

Q. Are CAD drafters in demand?
A.
CAD drafters help with the construction and engineering services. They are computer-aided designs that allow the architects and engineers to perform tasks through the drafters and expect them to temper demand for their team. The overall competition in this field is very strong. The civil and architectural drafters can experience electrical and mechanical drafters as the number of students are relatively high with drafting specialties. In particular, the drafting specialties can depend on the local industries for mechanical drafters in large manufacturing hubs. There are many drafting jobs in manufacturing and construction. Overall, the drafter can be sensitive to the overall economy.

Currently looking in the industry, they have a high demand for CAD drafters. Many engineers and talented architects are learning and creating digital designs which might look like a decreasing need for the drafters but currently looking in the industry, CAD drafting is a comfortable career choice.

Q. What qualifications do I need to be a CAD designer?
A.
If you have a dream of becoming a CAD designer then first you should start by pursuing a bachelor’s degree in the field of manufacturing or either in the field of architecture or engineering. You can also take a course on CAD at any technical school for two years. By learning the engineering and manufacturing standards, the student can learn more experience through the textbook ANSI. For the CAD drafter position, you should have all the design skills or participate in several development providers as an online entering, Mentor, and social media. Certification and credentials are very essential to ADDA. For everyone passionate about designing and IT coding or working with computers. There are many resources such as online learning and social media where one can prove their knowledge and efficiency through mock test practices.

Skills required to become CAD designers –

    • Communication skills.
    • Try to implement the new inventions.
    • All the basic computer skills required to operate a computer.
    • Problem solving capability.

product design engineering

Importance of Product Design Engineering Services in loT Solution

IoT brings endless possibilities for OEMs and establishments to disrupt the fame quo throughout diverse industries with clever products. However, growing IoT answers is a complicated process. An entire product engineering includes hardware engineering, embedded engineering, software program engineering, mechanical layout engineering, and manufacturing. Out of all offerings, mechanical layout offerings dominate.

Today’s customers’ buy selections are particularly inspired by product aesthetics, ease of use, shape factor, and sturdiness to get the preferred product performance. The absence of any of the elements may also result in the production of faulty parts, ensuing in excessive costs, manpower, and time.

Importance of Product Design Services

Mechanical layout offerings cowl each thing of the product layout procedure including business layout/sketches, 3-D CAD layout, CMF (Colour, Material, and Fitment) layout, 2D drawings, simulation, 3D proto validation, DFM analysis, and drawing update, mold tooling, and very last production. However, it’s far a complicated procedure because it includes growing and optimizing layout, making sure business preferred compliance, validating mechanical layout, and prototyping to supply advanced merchandise.

It meets the aesthetics and mental wishes of the product. Engineering-pushed product layout offerings contribute to becoming durable, tangible merchandise with decreased charges and time to market. It typically satisfies the call for and requirements of customers.

What is Included in Design Engineering Services?

​​The product style method converts ideas into ended products. it’s categorized into the stages that are as follows:

Industrial Design:

throughout this stage, the commercial designers will flip your ideas into initial sketches to begin visualizing how the product would possibly look. Once you’re happy with the form, they’ll design employing a 3D CAD program corresponding to SolidWorks, Creo, or different tools to make sure the merchandise is possible for each user and therefore the manufacturer. CMF is additionally a part of industrial design wherever designers nail down the color, material, and finish of the product. Designing merchandise with appealing colors, materials, and finishing doesn’t solely serve the purposeful needs however also creates a much better user experience.
industrial design

3D CAD Design:

3D CAD style is the finished victimization of differing types of 3D software systems to make real-life visualizations of a finished product. By effectively utilizing 3D rendering the designers will augment ancient styles that are functional likewise as esthetical appealing.
3D Cad design

Simulation and Analysis:

Simulation and analysis use advanced procedure methods, design optimization techniques, and visualization tools. for example, using advanced CFD methods, facilitate perceive the advanced design and performance problems long faced by several original instrumentality makers and enterprises. Simulation and Analysis will be performed victimization ANSYS and binary star tools for thermal analysis, shock, vibration, and drop situations of the merchandise.

3D Written Prototyping:

Prototyping a product can be pricey and slow however using 3D prototyping, you’ll reiterate efficiently. 3D modeling is one of the foremost vital steps of the product style process during this step, you get the thought of the form, fit, and function. 3D printed prototyping is the crucial part and necessary to validate the mechanic and engineering of it.prototyping

2D Detailed Drawing

when 3D CAD and 3D written example validation, it’s suggested to create necessary changes within the drawing and needs to unharness elaborated 2D drawings as well as tolerances that are vital to focus on for any process.

Tooling Development

Mechanical engineers can modify any pre-existing CAD from the epitome section to urge prepared for what’s referred to as DFM (design for manufacturing) to make sure the planning is optimized for manufacturable and doesn’t have reserve price embedded in it. supported the projected volume, soft-mold tooling or hard-mold tooling is selected.

Mechanical Style Testing

style validation testing is important to validate a product’s design as per design specifications, meets client requirements, trade standards, and product restrictive compliance. Once the models are created, the mechanical engineering team will validate the design margin by running numerous tests such as shock, drop, vibration testing, information science xx Testing, to check the merchandise in increasing stress levels of temperature, crash impact, distorted model visualizations, vibrations, the strength of the material, and so forth failure and defects found at this stage are corrected within the modeling section itself. This drastically reduces the scope of any error locomotion up throughout the producing phase.

Production Readiness

Having pre-tested and analyzed CAD Drawings and models helps the manufacturer to initiate the method of defect-free mass production with ease. firms will have trouble-free manufacturing with multiple vendors as per their policy with this type of readiness to upset any uncertainty.

Conclusion

Design engineering is the riding pressure on the back of each product created for customers. Companies that specialize in this area provide value-delivered offerings which are custom designed to the customer’s needs.

Looking for product designing engineering services for your business? Check out Monarch Innovation which is one of the best engineering and design innovation company in India. Contact us for more details.

Autocad in civil engineering

Significance Of AutoCAD in Civil Engineering

AutoCAD has taken the world of commercial designing by storm. There are many spectra where AutoCAD Civil 3D is used. It includes AutoCAD plant 3D planning, AutoCAD 3D modeling, AutoCAD map 3D, and the AutoCAD max 3D. AutoCAD hasn’t just done wonders the 3D way but can also be used traditionally for 2D designing for different projects.

In a nutshell, it’s software ideal for designing, planning, and analyzing the outlook of different objects and projects by engineers. If you are all set with an idea of an upcoming object and want visualization or an imagery concept of it? But if you don’t have the design skill you can get it done by the AutoCAD experts.

The importance of AutoCAD in civil engineering

Well as we all know there’s no designer without a design and no civil engineer without a plan or a concept, AutoCAD simply makes the drawing and charting out or mapping easier and more efficient than it may seem by hand. This isn’t just it, the different features the software gets for new-age civil engineering also make it an important tool for today. Here are the top features of the software that make it remarkable today

Features

DWG History

This is the era of saving all documents in a cloud system. AutoCAD now not only saves the file or the drawing as per the last updates but also the entire version history instead of creating a new copy or document each time you modify the file. It is all saved as history in the current version itself.

Block Libraries Tab

This is a great new feature in AutoCAD. There are many people involved in a single engineering concept, with this tabbed feature you can add different designs and drawings from your desktop or your computer onto the AutoCAD library. You can include as many drawings as you like in the drawing or the library with multiple selections.

Area-in Quick Measure Tool

Wanna measure the area in the drawings? You can do it now with AutoCAD, earlier you could only measure the angles and the distances of the different elements of the drawing.  You can not just get the area of the entire drawing but also the different parts, sections, and shapes of the drawing.

Improved Trim And Extend Feature

You might remember the previous trim and extend feature used to give ready options as to how you could trim and extend the drawing. The customization was limited. Now you can do it as you like, with different clicks and drags on parts you want to change. If you aren’t happy with the new alters you can also roll back to the standard version of the drawing.

Improved Revision Cloud

The revision cloud isn’t just marking or a para-line, but now a full-fledged shape in itself. You can customize it according to the measure that you want to revise. It can be a constant and also a flexible element of the drawing in case of last-minute uncertainties. You can also switch on and enable the different RevCloud variants in order to propose different edit options.

Precise Break-At-Point-Tool

The tool is similar to as it was earlier, but now there’s a different way the tool will work. Earlier you would have to put in a lot of effort to break a line or a figure, now you can do it with a click and drag, that’s it! You can even add the length or the exact angle from where you want to break and it’s done!

Want AutoCAD help for your upcoming project?

Monarch Innovation is the one-stop that will get your engineering business the right blend of technology with design and planning for the best results for your business. We help your business achieve organizational efficiency and render optimum results by giving you state-of-the-art solutions in the right sense of engineering. Our team of highly experienced and dedicated professionals has served clientele from across the globe through different industry concerns.

Virtual Prototyping

How Virtual Prototyping Helps Electric Vehicle Development

The automobile sector is, without a doubt, the most competitive in the world. Its operating scope is massive, as is its impact on humans and the environment. The automotive market has evolved from basic transportation equipment to highly stylish, feature-rich, reliable, and performant mobility platforms over the decades.

We are fortunate that technology is rapidly advancing to help produce solutions that solve sustainability challenges as awareness of sustainability has increased over the last decade and as we humans better comprehend our impact on the earth. Automobile manufacturers are responding to the drive for vehicle electrification by expanding their battery-powered vehicle lines and, in the case of GM, setting a goal to deliver zero-emission vehicles by 2035. As a result, a new virtual car design was created.

  • Those concerned about climate change applaud these initiatives, but electric vehicles (EVs) still have a long way to go before becoming mainstream. Worldwide electric car sales reached 2.1 million in 2019, accounting for 2.6 percent of global car sales and boosting the total stock of these vehicles to 7.2 million units, according to the International Energy Agency (IEA). While the COVID-19 outbreak is expected to affect passenger car sales, the International Energy Agency (IEA) expects that sales of electric passenger and commercial light-duty vehicles would remain stable in 2020, accounting for roughly 3% of global auto sales. Global electric car sales are expected to rise from 2.5 million in 2020 to 11.2 million in 2025 and 31.1 million in 2030, according to Deloitte. The following variables, according to Deloitte’s analysts, are causing this increase:
  • Demand from customers
  • Policies and laws of the government
  • Automobile manufacturers’ commitment to electric vehicles
  • Corporate fleets are transitioning to electric vehicles.

 Electric Vehicles development

Thanks to breakthroughs in battery technology and continual innovation, EVs now have the range and zippy performance that most drivers desire for daily commutes. Behind the scenes, however, these developments require a high level of engineering expertise, as well as modern design tools and resources. Let’s look at how electronic design automation (EDA) techniques can assist speed up Electric Vehicles Development while still achieving the desired results. According to Deloitte, the total sales of electric vehicles is likely to hit 11.2 million by 2025. In 2020, it was 2.5 million.

Early Detection of Design and Software Issues

The automakers of EV Virtual Prototyping must achieve the appropriate mix between performance, driving range, cost, and efficiency when designing EVs. They must also deal with the difficulties given by the severe operating environment of vehicles, as well as the interplay of electrical and mechanical components in this environment. For increased economy, many OEMs have chosen to use more hardware and software to provide intelligence to their vehicles, as well as fewer electromechanical elements.

The development of electronic systems to support electric vehicles has thrown up new issues in the areas of hardware design, software development, EV Chargers, and system testing. Early design space exploration, electrical component selection, software development, and integration complexity, functional safety testing, and prototyping cost are all important factors.

Bench testing has always been used by car designers to validate electronic systems. However, test benches are expensive, and fault injection without destroying the hardware is nearly impossible.

Electronic Vehicles with the help of virtual prototyping enable validating the entire electronic system without depending on physical hardware.  Moreover, in this work from home culture, virtual prototyping enables easy testing from anywhere across the world.

Electric Vehicles Development in One Place

We announced a comprehensive, multi-discipline EV virtual prototyping solution last summer that allows designers to examine design choices, weigh trade-offs, develop embedded software, and complete many stages of verification before manufacturing any hardware. The unified solution caters to the unique needs of electric vehicle design, such as:

  • Power electronics, battery systems, microcontrollers, and AUTOSAR components are all represented in EV model libraries.
  • For a detailed examination, a multi-level rapid simulation, from abstract to high-fidelity, is used.
  • Support functional safety, hardware and software debug, variation analysis, coverage analysis, and calibration design duties by debugging, analyzing, and testing functionality
  • Support for the Functional Mock-up Interface (FMI) and other application programming interfaces (APIs) enabling integration into other automotive flows and tools (FMI)

EV virtual prototyping solution comprises of the following components:

  • VirtualizerTM and Virtualizer Development Kits (SDKs) are tools for creating, distributing and using virtual hardware prototypes.
  • For effective development of engine control unit (ECU) software, the Silver virtual ECU platform brings development activities from road and test rigs to a Windows® PC.
  • TestWeaver® is an intelligent test automation tool that produces and runs system tests with minimal specification effort to discover mistakes and maximize test coverage.
  • SaberRD and SaberEXP are integrated environments for virtualizing and optimizing power electronic and mechatronic systems.

Our electric vehicle virtual prototyping solution allows a diverse group of development and test engineers to focus on areas such as controls systems, application software, firmware, power electronics, battery system management, motor drive, reliability, functional safety, calibration, and system/software integration, resulting in improved product quality and performance as well as lower development and maintenance costs.

To save time and reduce iterations, virtual prototyping can be utilized as a part of a shift-left strategy, which entails relocating the design and verification process earlier in the process. Furthermore, by prototyping online, designers can test faults and corner cases that would be harmful or impossible to achieve with hardware. Synopsys’ Triple-Shift Left process entails creating a virtual prototype alongside ECU development, using automotive-grade IP to execute specified functionalities on silicon, and doing early and comprehensive automotive software testing. Triple-Shift Left’s purpose is to transform the traditional serial automotive development process into a parallel one, saving time and money while optimizing the system from the start for functional safety, security, and dependability.

Conclusion

With EDA techniques like virtual prototyping, designing the electronic systems of electric vehicles can be a lot easier and faster. That’s great news for designers who are seeking to make a name for themselves.

Are you looking for virtual prototyping and designing solutions for your electronic vehicles? Check out us as we have already served the industry for a decade. Feel free to contact us with an inquiry.

 

References

https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/electric-vehicle-trends-2030.html

https://blogs.synopsys.com/from-silicon-to-software/2021/02/10/electric-car-design-virtual-prototyping/

Advanced Simulation and Design Optimization; Monarch Innovation

Advanced Simulation and Design Optimization; Monarch Innovation

The computational simulation and design optimization of complex dynamic systems is a challenging task that requires the use of efficient numerical methods, efficient algorithms, and reliable computing platforms. This text provides a comprehensive treatment of various topics in this field and covers both classical and modern approaches to solving problems related to system simulation and optimization.

Numerical techniques are used to model fluid flows in CFD. For both new prototypes and existing systems, this approach aids quick system integration in order to optimize the configuration for cost and efficiency. Moving fluid, heat transmission, and chemical reactions are all part of the system.

What is a digital prototype?

A digital prototype is a representation of your concept in visual form.

Humans are extremely visual creatures. In reality, visual information is processed by more than half of the cortex, which is the brain’s surface. So, the most essential part about seeing a prototype is that you see it! That prototype comes to life when buyers can see it and comprehend all the product’s components.

Although prototyping is an important phase in the concept creation process, it may be perplexing for new entrepreneurs. It’s easy to see why: a prototype may be anything from a collection of sketches depicting various panels to a flawless pre-launch interface.

A virtual reality experience.

Virtual reality (VR) is a virtual experience that may be both comparable and dissimilar to the actual world. Virtual reality has a variety of uses, including entertainment (such as video games), education (such as medical or military training), and business (e.g., virtual meetings). Augmented reality and mixed reality, often known as extended reality or XR, are two more forms of VR-style technologies.

The next generation of simulation and optimization software is here!

Advance Stimulation

Monarch Innovations is a company that specializes in sophisticated simulations such as Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) (CFD).

We think that simulating is essential for improving efficiency and dependability as well as continuing to innovate. Investing in simulation becomes critical if you want to avoid being disadvantaged by the market’s current competitiveness. Our FEA and CFD services aid in the evaluation of efficacy in all the sectors with which we work.

To give you a better perspective, here’s a quick primer on FEA and CAD:

FEA (Finite Element Analysis):

FEA essentially aids our designers in analyzing various alternative designs and weighing the benefits and drawbacks. This procedure aids us in selecting the optimal design for the product. FEA also allows us to test multiple modes of failure to see where the design may be improved. This saves time and effort, resulting in a rapid turnaround. Furthermore, if a requirement for design customization occurs, our designers can simply handle it by changing the measurements and modeling the impacts on the product. Designs are FEA-tested and given a final polish before being put into production.

We offer the most up-to-date tools and technology for analyzing product efficiency, which helps to reduce delays and drag the product finalization process.

CFD stands for Computational Fluid Dynamics.

With the aid of CFD, the genuine product or physical structure is displayed. Numerical techniques are used to model fluid flows in CFD. For both new prototypes and existing systems, this approach aids quick system integration in order to optimize the configuration for cost and efficiency. Moving fluid, heat transmission, and chemical reactions are all part of the system.

Design Optimization:

Design optimization aids in the improvement of a product’s efficiency and performance. While our team of specialists optimizes a design, numerous external elements are considered to provide a trustworthy final result. If the design is unsustainable, there is a good chance it will fall short of the needed standards. We generate a number of alternatives, evaluate them based on a variety of criteria, and select the best design.

How does Monarch Innovation help?

Monarch Innovation provides design optimization solutions for implantable implants, renewable energy, turbomachinery, and other industrial goods using Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA)-based technologies.

Our unique automated mesh generators, 3D inverse and direct design tools, parameterized geometry models, target functions, and histopathology and thrombosis models are all part of our CFD/FEA-based design technology.

Monarch’s objective is to deliver cutting-edge CFD/FEA-based design optimization technologies, simulations, and modeling to assist our clients in developing high-quality, high-performance products in the quickest period feasible.

Conclusion:

Advanced Simulation and Design Optimization can help companies design products, processes, or services that are more profitable, safer, easier to use, and environmentally friendly. Monarch Innovation offers these services in an affordable manner for any company looking to improve its product offerings. This is why Monarch Innovation is the best company for you to choose if you are looking for an experienced team to help with your simulation and design optimization needs. Contact us today so we can work together on creating a strategy that will drive results.

MEP Drawing

WHAT ARE THE ADVANTAGES OF MEP SHOP DRAWINGS?

Whether it is a construction project or designing the interiors and the exteriors of any building, the designers depend on the MEP (Mechanical, Electrical, and Plumbing) drawings for the smooth installation of the MEP components.

MEP shop drawings, considered as the backbone of the architectural and construction industry, are constituted by Mechanical, Electrical, and Plumbing drawings. These are the must-have drawings during the building phase of any project. A clear and concise MEP drawing serves as a clear path for the completion of the building which does not only save useful time but also the overall expenses. Without these drawings, it becomes impossible for the contractors to build a well-coordinated infrastructure and they may end up making mistakes and leading to huge losses in terms of time and money.

Constituents of MEP Drawings

Mechanical shop drawings

Mechanical shop drawings mainly deal with the heating, ventilation, and air conditioning (HVAC) systems and determine their placements. The HVAC represents the specifications for installation and fabrication of ducts, customized piping, and the other air-handling units. Besides these, the mechanical shop drawings also represent the transportation systems such as the lifts, escalators, infrastructural, and sometimes, industrial components.

Electrical shop drawings

The electrical systems in a building comprise a power supply and power distribution, access, control systems, security systems, information and communication system, interior and exterior lighting as well. Often there arises a conflict between the electrical and mechanical components inside a building. Therefore, with the help of comprehensive electrical shop drawings, contractors can accurately measure the layouts of electrical units to prevent any conflicts that may occur between the electrical and the mechanical components.

Plumbing shop drawings

The plumbing shop drawings represent the plumbing elements within a building which include piping and drainage system, garbage disposals, water carriers, etc. They specify fluid and air transport for heating and cooling, potable and non-potable water supply, and removal of waste.

Advantages of MEP Shop Drawings

  • If there is any potential flaw in the construction process, then with the help of MEP drawings, the contractor can directly refer to those drawing documents for locating the exact problem and fix it. In addition to that, if any parts or elements go missing or are found in damaged conditions, the contractor can easily find their substitutes after referring to those drawings. The licensing authorities also use the MEP shop drawings for effective planning, and also permitting and providing licenses for a fresh construction task.
  • With the help of MEP drawings, the accurate outline of the final assembly of products with the representation of their dimensions, cable or piping links, accessories, and weights are depicted and therefore the contractors can get an exact portrayal of how the construction design or supply process will look like during the on-site construction.
  • In the construction industry, it is necessary to keep a check on the cost factor, especially when it comes to MEP elements. The most important task regarding this is to estimate the cost of materials and installation, assembly cost, and elements cost, before the initiation of the construction project on-site in order to avoid overstocking and unnecessary wastages. 5D BIM helps in determining the cost of the components of the building, the types of materials to be used, and the assembling of the components and their installation. If there arises the case that the MEP building design is not accurate, orders can be placed with BIM Modeling which will prevent the wastage of time taken for manufacturing, reassembling, and re-installation.
  • MEP shop drawings help in the standardization of the building process and ensure that the products align with the industry standards, which enhances the chances of seeking licenses and building permits. If anyone is unsure about the standards to be followed, they can ask the BIM engineers for designing MEP drawings, conforming to the AEC industry standards and regulations.
  • The modern BIM technology gives a lot of freedom to its users which enables smooth collaboration among the project stakeholders. Cloud access improves the on-site collaboration and communication thereby, helping the sharing of the MEP shop sets with all AEC project stakeholders within the organization. This shared-cloud setup facilitates practical training for students and other such interested people who want to join the AEC industry.
  • An accurate BIM shop drawing besides being a reason for a long sustainable infrastructure enhances the brand value. If an organization adds its logo to its documents, it adds value to its brand. Therefore, there is no doubt in saying that a well-designed drawing leads to great infrastructure and a great infrastructure leads to a well-established brand.

If there is any requirement of shop drawings for MEP within your building, Monarch Innovation should be your first choice for getting your work done with utmost perfection. Monarch Innovation is a credible and reliable Design & Engineering company providing shop drawings services. They have a unit of skilled and experienced design engineers and architects who design every component of the building with much precision. Contact Monarch Innovation for having your MEP drawings designed by them.

industrial design vs product design

Industrial Design v/s Product Design

It is very difficult to configure the differences between industrial design and product design since both are used interchangeably. But in this article, we will figure out the aspects that distinguish industrial design from product design. First, we need to understand both the terms in detail to ascertain the differences between them. Let’s check out both the terms individually and then head over to their differences.

Industrial Design

Industrial design is a designing process implemented to design such products that are to be manufactured by mass production. It is concerned with the designs that are implemented to make products at an industrial scale or using industrial processes. The term Industrial Design was coined after the first industrial revolution when factories were set up to create specific products in huge amounts. Before the first industrial revolution, the products were designed by implementing manual techniques which resulted in lower manufacturing productivity. After the first industrial revolution, the industrial designers were entrusted with the following tasks:

  • Replacement of existing products by such new products that would perform the required functions and appeal the consumers to buy those new products
  • Design such products that could be manufactured in large volume
  • Look for such possible methods that could reduce overall product manufacturing costs and value engineering

It is concerned with bringing the art form and usability, which associates with craft designing and ergonomics for producing goods in large volumes. The industrial designing process is creative as well as analytical. Industrial designers often implement certain designing methodologies in the creative process such as user research, comparative product research, designing of the model, prototyping, and testing. It focuses on technical concepts, products, and processes. It also encompasses engineering, usefulness, and market placement. Industrial designers do not go into the technical details of the products.

Product Design

Product design is the subset of industrial design. It is the responsibility of a product designer to deliver a fully functional product. Product designing is implemented to create new products that could be sold by businesses to their customers. It is the set of strategic and tactical activities, including the generation of ideas for the creation of the product and its commercialization. In a more systematic way, it involves conceptualization and evaluation of the ideas to turn the products into ideal inventions.

The role of a product designer is to combine various approaches to create new products that can be helpful for the masses. Product designers widely need to consider details such as the ways people use and abuse products, faulty products, and the desirable ways in which those products could be used.

The product designing process focuses on different aspects. The processes are brought into action by a unit of people having different skills and training. The processes consist of identifying the requirements, exercising possible ideas, creating models, and generation the product. The finalization is done after making it into an actual product and removing any fault in the product or improving the product if necessary. The product design is classified into various categories such as mechanical product design, electrical product design, electronic product designs, etc.

After understanding both designs in detail, let’s head towards the basic differences between industrial design and product design.

Differences Between Industrial Design and Product Design

Industrial design encompasses a wider area. The product designing team works because of the input that industrial design engineers provide. In short, industrial design involves activities that consist of product specification, aesthetics, and presentation. On the other hand, product design involves detailed designing of the products based on the specifications that are provided by industrial design engineers.

INDUSTRIAL DESIGN

PRODUCT DESIGN

Industrial design is mainly concerned with product development lifecycle.

Product design is basically a subset of industrial design.

Industrial designers focus on the aesthetics of the products and their manufacturing.

Product designers focus on the detailed design of the products.

It is about creating solutions.

It is about taking the solutions to the manufacturer and the customers.

Industrial design is responsible for the overall function, aesthetics, user interface (UI), and user experience (UX) of the products.

For product designing, function-specific teams such as mechanical, electrical, and software engineers are involved.

This field widely ensures that the product design meets customer expectations and if they are suitable for mass production.

This field ensures the functioning of the products according to their specifications and applicable standards.

It involves activities that cover the complete product lifecycle.

It involves activities that cover up the processes up to final product development.

The above listed are the fundamental differences between industrial design and product design. Though there are not many considerable differences between them, as product design is the subset of industrial design, the points included above are enough to differentiate between them. I hope you find this article helpful in distinguishing industrial design from product design.

Previous Next
Close
Test Caption
Test Description goes like this
Add to cart
Open chat
Hello,
Welcome to Monarch Innovation!

How Can I Help You..?